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Abstract

Many populations are “hidden” from the point of view of traditional probabilistic

surveys. They are populations for which we have no meaningful sampling frame and

whose members may be difficult to identify. Examples include victims of human

trafficking and civilian casualties in armed conflicts. Understanding these populations

is central to policymaking and to prosecuting human rights violations, yet statistical

inference remains extremely difficult in practice. One main approach to inference

consists of aggregating data from different sources through record linkage and adjusting

for undercoverage using multiple systems estimation. In practice, however, organizations

may not be willing to disclose private information to conduct such studies. We therefore

analyze the potential of privacy-preserving record linkage (PPRL) to assist these studies,

comparing the security and privacy guarantees provided by PPRL frameworks to the

privacy needs of organizations in practical applications. Our analysis highlights many

limitations of current PPRL frameworks and suggests next steps towards practical

PPRL for the statistics of hidden populations.

1 Introduction

In the context of statistical research, a population is said to be “hidden” if it may not be

reached using traditional survey methodology. Such a population has two main character-

istics (Heckathorn, 1997; Spreen, 1992). First, there is no sampling frame — there is no

“phone book” or general index which would allow the design of an efficient probabilistic
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sampling scheme. The size of the hidden population is unknown and may be relatively

small compared to the general population. Second, because of privacy concerns, particular

vulnerabilities, or other barriers, members of this population may be difficult to identify

or may not be willing to disclose information. Some examples include victims of human

trafficking and modern slavery (United Nations, 2001, 2000; Datta and Bales, 2013; Cock-

ayne, 2015; Bales et al., 2015; International Labour Organization, 2017a,b; Landman, 2020),

civilian casualties in armed conflicts (Ball and Asher, 2002; Sadinle, 2014; Ball and Price,

2019), and people who inject drugs (Mathers et al., 2008).

There are two main categories of approaches to the statistical study of hidden populations:

(1) link-tracing approaches, and (2) approaches based on administrative data sources or

convenience samples. Link-tracing, which includes snowball sampling and respondent-driven

sampling (Spreen, 1992), relies on an underlying social network in the target population.

Members of the population are asked to identify others within their population, and a sample

of the population is generated by navigating these relationships. Approaches based on

administrative data, on the other hand, rely on existing but incomplete data sources. In the

context of human trafficking, many organizations such as the police and non-governmental

organizations come into contact with victims. Their records can be aggregated and cleaned

through record linkage in order to obtain a more complete picture. There are still many

challenges associated with such data, however, such as undercoverage and non-representation

(Price and Ball, 2015; Hand, 2018). Multiple systems estimation (MSE) (Fienberg, 1972)

and other statistical techniques are therefore used to adjust for undercoverage and bias, to

the extent possible. In its simplest form, MSE is used in conjunction with record linkage to

estimate the size of a population using data from multiple sources. This has been widely

used in epidemiology (Wittes, 1974; Yip et al., 1995; Chao et al., 2001), and human rights

statistics (Lum et al., 2013; Manrique-Vallier et al., 2013; Bales et al., 2015; Sadinle, 2018;

Bird and King, 2018).

Here we consider the use of record linkage and multiple systems estimation (RL+MSE)

to estimate the size of hidden populations. These methods are particularly suited to the

problems of estimating casualties in armed conflicts and quantifying human trafficking in

countries with strong law enforcement, as link tracing approaches may not be applicable

in these cases. A central challenge in RL+MSE studies is to obtain the collaboration of

organizations which possess data regarding individuals in the population of interest. In past

studies, a trusted third party (or an overarching governmental agency) would perform record

linkage and only release the minimal set of statistics necessary for population size estimation
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through MSE. However, this poses a disclosure risk if the third party is compromised. Some

organizations might also not be willing or legally allowed to share private data with a third

party (Bales et al., 2019).

There is therefore a need for secure computation and privacy-preserving technologies

to assist RL+MSE studies. This would reduce the risks associated with relying on third

parties and could allow the broader implementation of this methodology. The field of

privacy-preserving record linkage (Hall and Fienberg, 2010; Vatsalan et al., 2013; Schnell,

2015; Vatsalan et al., 2017) provides solutions to “private” record linkage which are suitable

to different kinds of input data, required data releases, and privacy requirements. However,

care has to be taken in understanding the security and privacy guarantees provided by

PPRL approaches. The field of PPRL mostly focuses on secure computation of a certain

record linkage output. However, we will see that current PPRL approaches usually do not

satisfy strong security guarantees. Futhermore, PPRL approaches do not provide guarantees

for the protection of individual privacy. The risks associated with disclosing computation

outputs also need to be considered and mitigated (Hall and Fienberg, 2010; Schnell, 2015).

Our paper provides a first step towards the implementation of security and privacy

technologies for RL+MSE studies. We review the field of PPRL from the point of view of

individual privacy in view of the security and privacy needs of organizations participating in

RL+MSE studies. Given the limitations of PPRL, we propose a reframing of the problem

through what we call secure entity resolution and collaborative data disclosure. We define

secure entity resolution as the problem of obtaining unique entity identifiers (uIDs) for

records spread across organizations, while not revealing any sensitive information, and we

propose two approaches to do so securely. Following the obtention of these uIDs, data

releases can be orchestrated through secure multiparty data disclosure protocols which

respect individual privacy.

The rest of the paper is organized as follows. Section 2 reviews the record linkage and

multiple systems estimation problem of interest. We describe the data held by organizations,

different record linkage approaches which can be used, the record linkage output needed for

MSE, and we formalize the security and privacy need of organizations. In section 3, we

provide a broad overview of PPRL. In section 4, we consider PPRL within the context of

RL+MSE studies. We define secure entity resolution in section 4.1 and we consider possible

implementations in section 4.2. Section 4.3 then discusses collaborative data disclosure

approaches which can be considered following secure entity resolution. Section 5 concludes

with a discussion of the main challenges we encountered and outlines the potential for future
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work in the area.

2 Record Linkage and Multiple Systems Estimation

This section reviews the use of record linkage and multiple systems estimation in order to

estimate the size of populations. We begin by reviewing MSE and past studies in section

2.1, explaining the logic of the methodology, its requirements, and its limitations. Next in

section 2.2, we explain how data from multiple sources can be aggregated through record

linkage. We provide an overview of different record linkage frameworks and explain how

they relate to how multiple systems estimation is carried out. Finally, in section 2.3, we

discuss security and privacy needs of organizations in reasonable practical applications.

This provides the basic set of requirements against which PPRL approaches are evaluated

in sections 3 and 4.

2.1 Multiple Systems Estimation Studies

Multiple systems estimation refers to a set of statistical tools used to estimate the size of

populations using multiple sources of information. The underlying ideas were introduced as

early as the 17th century by John Graunt, who estimated London’s population at the time

by comparing death records to an estimated death rate (Hald, 2005). Laplace (Laplace,

1820; Cochran, 1978) later formalized the approach and provided error bounds through

asymptotic theory. These ideas led to capture-recapture methods in population ecology

and were generalized by Fienberg (1972), leading to modern MSE. Today, MSE is used to

evaluate the accuracy of the United States decennial census, to estimate disease prevalence

in epidemiological applications, as well as more broadly in the fields of official statistics and

human rights statistics (Bird and King, 2018).

The logic of MSE is best explained with only two sources of information. So, suppose

that two organizations have records regarding individuals in a population of interest. Each

organization’s set of records defines a list of observed individuals. Let n1 be size of the

first organization’s list, let n2 be the size of the second organization’s list, and let n1,2 be

the overlap between the two. A large overlap between the two lists, meaning that n1,2 is

relatively large, might indicate that the lists have a good coverage of the population of

interest. On the other hand, a small overlap can indicate under-coverage. More precisely,

the Lincoln-Petersen estimator (Lincoln, 1930; Petersen, 1895) of the population size is
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defined as

N̂ =
n1n2
n1,2

.

If the lists as uncorrelated, meaning that an individual appearing on one list does not

affect the chances of that individual appearing on the other list, then the Lincoln-Peterson

estimator is approximately unbiased. If the lists are positively correlated, then N̂ estimates

an upper bound of the population size; and if the lists are negatively correlated, then N̂

estimates a lower bound of the population size (Chao et al., 2008). Therefore, knowledge

of the overlap pattern between lists, together with background knowledge of interactions

between them, is informative of the population size.

This approach can be extended in two ways. First, we may consider the use of more

lists. In this case, all overlap patterns between lists must be considered, and interactions

between lists must be carefully modeled. That is, for any set of lists ω, let nω be the number

of individuals which appeared in ω and in no other list. This provides the set of overlap

counts for the data, where n∅ is missing. A model for the set of counts nω can then be

specified and used to estimate n∅ through maximum likelihood or through other means

(Fienberg, 1972). The population size is the estimated as N̂ = nobs + n̂∅, where nobs is

the total number of observed individuals. Second, if the target population is composed of

heterogeneous groups, then we may account for this through stratification: MSE will be

separately applied to different groups. This can help obtain more accurate estimates when

heterogeneity induces interactions between lists that are difficult to model directly.

Example 2.1 (Quantifying Modern Slavery in the United Kingdom). Modern slavery

is an umbrella term which refers “to situations of exploitation that a person cannot

refuse or leave because of threats, violence, coercion, deception, and/or abuse of power”

(International Labour Organization, 2017a,b). This includes issues of forced labour, forced

sexual exploitation, and forced marriage (International Labour Organization, 2017a), and

the term “modern slavery” is commonly considered synonymous to human trafficking.

Silverman (2014); Bales et al. (2015) quantified modern slavery in the United Kingdom

in 2013 using multiple systems estimation and data provided by the National Crime

Agency Strategic Assessment. The data referred to 2,744 cases of trafficking and modern

slavery having been observed by either non-governmental organizations (NG), governmental

organizations (GO), the general public (GP), local authorities (LA), the police force (PF)

or directly by the National Crime Agency (NCA). These six sources, each corresponding to

a list of potential victims of modern slavery, were the basis of the MSE study. The National
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Total Cases observed once Cases observed twice 3+ times

2744 54 463 995 695 316 15 19 3 62 19 1 76 11 8 1 1 4 1

LA × × × × × × ×
NG × × × × × × × × ×

PFNCA × × × × × × × ×
GO × × × × × × × ×
GP × × × ×

Table 1: Overlap counts for the study of Silverman (2014); Bales et al. (2015) on modern

slavery in the United Kingdom. Note that the PF and NCA lists have been merged together

as in Silverman (2014). Each column represents the number of cases which appeared only

in the lists corresponding to an “×” symbol underneath. For instance, 54 potential victims

have been observed only on the LA list, and 15 cases have appeared both on the LA and

NG lists.

Crime Agency linked the data in order to obtain the overlap counts nω for each non-empty

subset of the lists NG, GO, GP, LA, PF and NCA lists. The data is represented in table 1.

Silverman (2014); Bales et al. (2015) modeled the data using a Poisson log-linear model

with two-way interactions. That is, each count nω is modeled as

nω ∼ Poisson (λω) , log λω = µ+
∑
i∈ω

αi +
∑
{i,j}⊂ω

βi,j . (1)

Here µ is an intercept term, αi represents main list effects, and the parameters βi,j , i 6= j,

are used to model pairwise list interactions. Crucially, this model assumes the absence of

higher-order interactions between the lists.

The model parameters were estimated by maximum likelihood with two-way interaction

terms selected through stepwise forward p-value thresholding. See Bales et al. (2015) for

details and Chan et al. (2020) for methodological improvements.

Given an estimate µ̂ of µ and using the fact that n∅ ∼ Poisson(exp{µ}), we may then

estimate n∅ as n̂∅ = exp{µ̂}. In Silverman (2014); Bales et al. (2015), the confidence interval

for µ̂ led to an estimate of between 10,000 to 13,000 potential victims of modern slavery in

the UK in 2013.
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2.1.1 Requirements of MSE Studies

The most basic requirement of MSE studies is a table of overlap counts, as in table 1. This

table may be further disaggregated by socio-demographic variables and other information.

In its most detailed form, the data consists of one row xi = (yi, zi) for each observed

individual i, where yi is a vector indicating the set of lists on which the individual appears

and zi is a vector of covariates. Obtaining this data requires to perform record linkage

of the organizations’ databases and to combine their information into a consistent set of

covariates zi. Processes to do so are discussed in section 2.2.

Furthermore, MSE requires sufficient knowledge about the organizations and their data

collection process to specify a good model for the aggregated data. This model must be

sufficiently informative to link the unknown count of unobserved individuals to estimable

model parameters. Typically, MSE studies assume the absence of “highest-order interaction”

between lists (Fienberg, 1972; Yip et al., 1995), as is the case with log-linear models

(Fienberg, 1972) and decomposable graphical models (Darroch et al., 1980; Madigan and

York, 1997). This assumption effectively expresses the expected value of n∅ as a function of

other model parameters.

2.1.2 Limitations of MSE Studies

There are many challenges to successfully applying MSE in practice. In many cases, we have

limited knowledge of the data collection practices of organizations or of plausible interactions

between lists. It may therefore be difficult to justify the choice of a model or the choice

of specific assumptions used to infer the number of unobserved individuals. Furthermore,

even if a model can be adequately chosen, the data is MSE studies is often limited. In table

1, for instance, we can see how few individuals have appeared on more than one list. For

many possible combinations of lists, there is no corresponding data point. This limited

data implies that we must resort on prior knowledge and regularization procedures in order

to estimate model parameters. This is problematic since the extrapolation formulas used

in MSE studies are very sensitive to small changes in estimated parameters. These issues

boil down to a problem of underspecification (D’Amour et al., 2020) - many reasonable

approaches to MSE can give wildly different results.

These limitations should be carefully accounted for when performing MSE studies

securely and privately. MSE cannot be considered a simple black box. While protect-

ing individual privacy, sufficient information need to be disclosed to allow results to be
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scrutinized.

2.2 Record Linkage Approaches

The goal of record linkage (also referred to as entity resolution and deduplication) is

to identify records which refer to the same entity (Herzog et al., 2007; Christen, 2012;

Christophides et al., 2019; Jurek-Loughrey and Deepak, 2019; Binette and Steorts, 2020).

That is, the goal is to identify pairs of records which match or, equivalently, to cluster

together records which refer to the same entity. These records may be spread across one or

more databases and the entities of interest can be persons, objects, or events.

The problem is formally defined below under the name of entity resolution. We rely

on unique entity identifiers to formalize the specification of a record linkage or clustering.

That is, we formulate the entity resolution problem as one of uniquely assigning records to

entities. Given unique entity identifiers, databases may then be joined or cleaned through

standard techniques such as SQL “group by” and different “join” operations.

Definition 2.1 (Entity resolution). Entity resolution is the problem of assigning unique

entity identifiers to a set of records, where a unique identifier is any code which uniquely

identifies a given entity.

Example 2.2 (Record linkage of killings and disappearance records). Table 2 shows an

illustrative example of records of killings and disappearances (Sadinle, 2014). This was

inspired by data from the United Nation Comission Truth Commission for El Salvador

(UNTC). Following the 1979 - 1992 civil war (Ball, 2000; Hoover Green, 2011; Green and

Ball, 2019; Sadinle, 2014), the United Nations collected records of killings and photocopies

were later digitized using optical character recognition. Given that the data was collected

many years after the conflict and that photocopies were digitized, there is noise in the

data, such as misspellings, optical character recognition errors, and possible inaccuracies.

Furthermore, many different records can refer to the same individual. Record linkage

approaches are therefore necessary to clean and integrate the data. In the context of an

MSE study, where the source of each record would also be identified, record linkage would

enable the computation of overlap counts.

A potential clustering of the records of table 2 is shown in table 3, with unique entity

identifiers “Person A” and “Person B.” Note that there is a lot of uncertainty involved in

such a clustering, and this is only of many possible ways in which the records could have

been grouped and aggregated. Different record linkage approaches range from providing
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Record Given name Family name Year Month Day Municipality

1. JOSE FLORES 1981 1 29 A

2. JOSE FLORES 1981 2 NA A

3. JOSE FLORES 1981 3 20 A

4. JULIAN ANDRES RAMOS ROJAS 1986 8 5 B

5. JILIAM RMAOS 1986 8 5 B

Table 2: Example of records of killings and disappearances inspired by the UNTC dataset.

The data shows some of the challenges of record linkage. For instance, it is unclear whether

or not records 4 and 5 refer to the same individual or if the two individuals could be siblings.

Records 1–3 may refer to one or more individuals, depending on the level of noise in the

data. This table is reproduced from table 1 of (Sadinle, 2014).

1.

2.3.

Person A

Jose Flores

Municipality A

– /– /1981

5.4.

Person B

Julian Ramos

Municipality B

05/08/1986

Table 3: Possible clustering and merging of the records in table 2. This is reproduced from

table 2 of Binette and Steorts (2020).

a simple estimate of the linkage structure (such as in table 3) to quantifying uncertainty

through pairwise match probabilities or through probability distributions on the clustering.

These different approaches are reviewed next in section 2.2.2, following the introduction of

the record linkage pipeline 2.2.1.

2.2.1 The Record Linkage and Data Cleaning Pipeline

Record linkage projects are typically carried out in four main stages. First, records are

standardized and aligned so that they can be compared to one another. Second, in the

blocking phase, records are sorted into blocks according to given rules. The goal is to speed
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up record linkage by eliminating obvious non-matches: pairs of records which do not appear

in the same block are automatically considered to be non-matches. For example, records

may be blocked according to an individual’s initials, with disagreeing initials meaning that

records are considered to be non-matches. Third, record linkage is performed within blocks

as to identify coreferent records (records which refer to the same entity). In the fourth

stage, canonicalization or data fusion, coreferent records are merged as to combine their

information and resolve inconsistencies.

The quality of a record linkage is usually evaluated using the precision and recall

performance metrics. Precision is the percentage of posited links which are actually a match,

while recall is the percentage of matching record pairs which are correctly linked together.

Computing precision and recall require ground truth data to be available. In practice these

values are estimated using unsupervised model-based approaches or through clerical review

of record pairs.

2.2.2 Typology of Record Linkage Approaches

We now review three main types of record linkage approaches which are widely used in official

statistics and research. These are deterministic, probabilistic, and Bayesian approaches.

We also restrict our focus to unsupervised record linkage, where no ground truth data or

manual review of records is used. Unsupervised record linkage is better suited to the privacy

requirements of RL+MSE studies.

Deterministic record linkage: Deterministic approaches provide an estimated linkage,

without accounting for possible errors in the results. These approaches often use fixed

rules to determine the matching status of record pairs. For example, records may

be linked if they are an exact match in all but 1 fields. If typographical errors are

expected, string comparison metrics can be used as the basis of more sophisticated

linkage rules. The Levenshtein distance between two strings, for instance, computes

the minimum number of insertions, deletions or substitutions needed to transform one

string into the other. This string similarity function can be thresholded to determine

the matching status of certain record pairs. In addition to explicit linkage rules,

clustering algorithms can also be used to obtain entity clusters from pairwise record

similarities.

Probabilistic record linkage: Probabilistic record linkage approaches focus on estimat-

ing the probability that record pairs match and provide estimated error rates. The
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seminal work of Fellegi and Sunter (1969) introduced the first model for probabilistic

record linkage. This model relies on computing a comparison vector γ = (γ1, γ2, . . . , γk)

for each record pair, where γi is the result of a comparison between the records ith

field. For instance, binary comparison can be used as to determine the matching

status γi ∈ {0, 1} of the record pair’s ith field. A mixture model is then fitted to

the set of comparison vectors (e.g. using the EM algorithm), resulting in estimated

match probabilities for each possible value of γ. While there are many variants to

this approach, the model of Fellegi and Sunter (1969) remains the most widely-used

as the basis of unsupervised probabilistic record linkage.

Bayesian approaches: Bayesian approaches provide a posterior distribution on the link-

age, allowing full quantification of uncertainty (Sadinle, 2018). Many such approaches

are based on the model of Fellegi and Sunter (1969), while others have adopted latent

entity modeling which is more closely related to clustering techniques. These require

the computation of comparison vectors or the computation of comparisons between

vectors and latent entities. These models are fitted using Monte Carlo Markov Chain

techniques and the posterior distribution on the linkage is approximated by a set of

plausible linkages.

2.3 Security and Privacy Needs

This section details the security and privacy need of organizations which could participate

in RL+MSE studies. We define security as protection against unintended data disclosures.

These disclosures could be the result of a deliberate attack or it could be the result of simple

negligence if adequate protections are not taken. Privacy, on the other hand, is meant to

ensure that even intended data disclosures do not inadvertently reveal sensitive personal

information. In the context of RL+MSE studies, sensitive personal information includes:

1. which organizations (if any) a given individual has been in contact to, and

2. any more specific information about a given individual collected by these organizations.

None of (1) and (2), excepted for information already available to organizations, should be

disclosed in RL+MSE studies. This includes both disclosures due to a security breach and

inadvertent disclosures due to deductive re-identification or other inferences.

Given that RL+MSE studies require the collaboration of organizations in order to

compute a shared function (an estimate of a total population size), defining security requires
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particular care. The notion of secure multiparty computation, reviewed in section 2.3.1,

provides adversary models and security definitions suitable to this context.

Furthermore, given the requirements and limitations of MSE studies discussed in sections

2.1.1 and 2.1.2, it is necessary for organizations to share sufficient information for the scrutiny

of MSE analysis. At the very least, a table of overlap counts as in table 1 should be released.

Protecting against the inadvertent disclosure of sensitive personal information through this

table requires the formalizations of privacy discussed in section 2.3.2.

2.3.1 Secure-Multiparty Computation

Secure Multiparty Computation (SMC) (Evans et al., 2017) is the problem of evaluating a

function based upon multiple parties’ inputs where each input must be kept private from all

parties, except for what is inferred from the comparison between a party’s own input and

the realized output. Each situation in which SMC is used will provide different constraints

and definitions of privacy.

Computational security is the security against adversaries implemented by non-uniform,

polynomial-time algorithms. A security structure can be defined as computationally secure if

an adversary with computationally bounded resources cannot succeed, while an unbounded

adversary can break the security of the structure.

Adversary models present in this paper are the semi-honest and malicious adversaries.

Semi-honest, also known as honest-but-curious, adversaries are parties which are included

in the SMC, which abide by all rules of protocol. However, they will make any attempt to

uncover any data about the other parties without straying from the protocol. In contrast

with semi-honest adversaries, malicious adversaries have all of the curious tendencies of a

semi-honest adversary, but will make attempts to deviate from the protocol. This deviation

is achieved through means of not communicating the result of their function, or tampering

with the output of the function.

For protection specific to these malicious adversaries, a protocol must abide to descriptors

such as guaranteed delivery, and output fairness. Guaranteed delivery ensures that all

parties will receive the output of the multiparty function despite malicious adversaries, and

output fairness describes that if one party receives the output, all parties receive the output.

The use of Secure-Multiparty Computation in this context of hidden populations is the

situation described. There are two separate organizations that are in contact with these

hidden populations seeking help. One of these organizations is a governmental organization,

and the other is a nonprofit organization. The reason why SMC is useful in this situation
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can be where a member of a hidden population only contacted the nonprofit due to the

governmental organization is compromised by the human trafficking group. When this

member is seeking help with the nonprofit, they are in fear of the retaliation by the

human trafficking group if they found their information. This semi-honest governmental

organization would not have access to the database of the nonprofit when SMC is used in

conjunction with PPRL.

2.3.2 Statistical Disclosure Control and Differential Privacy

Protecting individual privacy in data disclosures is the subject of statistical disclosure

control (SDC) (Hundepool et al., 2012). Since any useful data release will necessarily reveal

some amount of information, the goal of SDC is to ensure that the probability of adverse

events is sufficiently small. The concept of differential privacy (Dwork, 2008) has emerged

in the field to formalize the meaning of protecting individual privacy. The idea is that data

releases should be randomized such that the inclusion or exclusion of any one individual

from the original data does not substantially affect the odds of any subsequent event.

Formally, let D be a dataset and let M be any algorithm which randomizes a selected

function of D. Then M is said to be ε-differentially private if, for any two databases D and

D′ which differ by at most one individual, and for any event E, we have

log
P(M(D) ∈ E)

P(M(D′) ∈ E)
≤ ε.

3 Overview of Privacy-Preserving Record Linkage

Privacy-preserving record linkage is the problem of securely linking records across organiza-

tions without revealing personally identifying information. That is, organizations want to

rely on personal information to carry out record linkage, without revealing that information

to each other. There are many reasons why this is necessary beyond our case study of

RL+MSE studies. Health care providers might be interested in aggregating medical records

for research purposes. However, the Health Insurance Portability and Accountability Act of

1996 (HIPAA) restricts the sharing of protected health information. Similar legal restrictions

are formulated under the Family Educational Rights and Privacy Act (FERPA) and under

the General Data Protection Regulation (GDPR) in the European Union.

Most of the PPRL literature focuses on the problem of releasing, to the organizations or

to a third party, a restricted set of attributes only for matching records. With two databases
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for example, only selected information regarding individuals appearing in both databases

will be released. The PPRL literature also typically ignores disclosure risks associated with

the result of the record linkage. That is, there is a focus on security while privacy is not

directly considered. Section 3.1 reviews the standard conceptualization of PPRL which is

used in the literature we discuss.

Implementations of PPRL approaches fall under three main categories which are reviewed

in section 3.2. Hash-based coding approaches are used to mask identifying attributes while

still allowing comparisons between them. These techniques are used in practice because

of their simplicity and speed. However they can be susceptible to dictionary, frequency

and cryptanalysis attacks. Approaches which satisfy the formal security definition of

secure multiparty computation (MPC) fall under homomorphic encryption and other MPC

protocols. Generally, homomorphic encryption is preferred to other MPC protocols as it

does not require as much network communication between organizations. Network access

to databases is usually restricted when dealing with highly sensitive data.

3.1 Standard Conceptualization of PPRL

As previously stated, most of the literature on PPRL focuses on the problem of releasing a

restricted set of attributes for records matching across organizations. Following Vatsalan

et al. (2013), the PPRL problem can therefore be defined as follows.

Definition 3.1 (Standard goal of PPRL.). Let D1,D2, . . . ,Dm be a set of m databases with

records ri,j ∈ Dj , i = 1, 2, . . . , Nj . Let C : D1×D2×· · ·×D1 → {0, 1} be a classification rule

to identify tuples of matching records, and let M = C−1({1}) bet the set of matching record

tuples. Also let f(ri,j) be a selected attribute for record ri,j . The goal of privacy-preserving

record linkage is then to release the set {(f(r1), f(r2), . . . , f(rm)) | (r1, r2, . . . , rm) ∈M} of

selected attributes for matching records.

The way in which PPRL is carried out may involve a non-colluding third party. Ideally,

the security definition of secure multiparty computation discussed in section 2.3.1 should be

achieved under reasonable adversary models. Current PPRL approaches typically do not

provide such a high level of security. The security of various PPRL approaches is discussed

on a case-by-case basis in section 3.2.
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3.2 Standard Approaches to PPRL

Before continuing on to review standard approaches to PPRL, let us discuss the underlying

framework and its associated terminology in more detail.

Record attributes used to perform record linkage are referred to as quasi-identifiers.

These can be attributes such as name, date of birth, address, etc. Typically, PPRL involves

the organizations (data owners) as well as a third party called a linkage unit. The linkage

unit’s role is to aid organizations in performing the computations necessary for record

linkage.

3.2.1 Hash-Based Coding Approaches.

Most of the PPRL literature advocates for so-called masking approach (Christen et al.,

2020). Organizations individually mask quasi-identifiers using hash-based codes which are

then shared to the linkage unit. The linkage unit then performs record linkage based on

these codes and notifies organizations of matching records. Selected attributes for matching

records can finally be shared. Below we describe PPRL approaches to deterministic record

linkage.

Keyed hash functions for exact matching rules. The simplest deterministic record

linkage algorithms rely on the exact matching status of quasi-identifiers. For example,

two records may be considered a match if they agree on name and date of birth, or if

they agree on name, age and zip code. This only relies on the equality or non-equality of

quasi-identifiers, and the algorithms may therefore be implemented on an equality-preserving

encryption of the quasi-identifiers. This was first proposed in Dusserre et al. (1995); Quantin

et al. (1998).

Formally, the approach is as follows. First, organizations agree on a shared secret

seed using any secure multiparty secret key generation protocol. Next, quasi-identifiers

are encrypted using a keyed one-way hash function. The encrypted quasi-identifiers are

communicated to the linkage unit which performs the record linkage and communicates

back the matching status of records.

This approach is susceptible to collusion between the linkage unit and other organizations.

Indeed, if the hash function seed is shared with the linkage unit, or if encrypted values held

by the linkage unit are shared with other organizations, then a simple dictionary attack

can be performed to break the encryption.
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A solution to the dictionary attack problem is to secret share the seed and to implement

the one-way hash function collectively through commutative one-way hash functions. The

protocol is described in Vaidya and Clifton (2005) for the secure set intersection cardinality

problem. We are not aware of the use of this technique for PPRL applications.

Bloom filters for string similarity evaluation. Bloom filters are data structures

which are used for evaluating the similarity between two strings, and computing the chance

that an item is within a set. A bloom filter consists of a bloom vector which contains l bits

which are initialized at 0. To fill the bloom filter, a set of k hash functions are utilized

to map each of the elements of the set to the bloom vector. Schnell et al. (2009) details

the process for string similarity evaluation. At the start of the process, strings that could

be similar are broken up into x-grams, which contain x characters each. For example, the

name ”Alice” in a 3-gram similarity will consist of strings ”–A”, ”-Al”, ”Ali”, ”lic”, ”ice”,

”ce-”, and ”e–”, and ”Alexa” will produce ”–A”, ”-Al”, ”Ale”, ”lex”, ”exa”, ”xa-”, and

”a–”. Alice’s 3-grams will be passed through the hash functions and added to its bloom

filter, and Alexa’s 3-grams will undergo the same process to its own bloom filter. The string

similarity is found when the collisions are compared between the bloom filters. A quick

glance at the strings will immediately show they are not the same, but bloom filters are

employed to make this calculation while securely encrypted. Described by Vatsalan and

Christen (2016), bloom filters can also be used to check if an item is possibly within the set

without having access to the set. In this method, each item of the set is added to the bloom

vector after being passed through the k hash functions, changing each of the mappings to a

1 bit on the bloom vector. When querying for an element on the bloom filter, the element

is run through the same hash functions and compared to the bloom vector. A party can

say that the element is definitely not in the set if the queried element’s bloom vector has

at least one ”1” bit that correlates to a ”0” bit on the set bloom vector. Through this

method of comparison, there is no possibility of false negatives, however, the chance of a

false positive increases with each element that is added to the filter.

3.2.2 Homomorphic Encryption

Homomorphic encryption is a scheme in which a party can do calculations on a piece of

encrypted data without decrypting the data. Described by Rivest et al. (1978), a bank

loan company stores its loan data in a time-sharing server, but has its data encrypted on

that server. If the bank loan company would like to calculate trends for their bank loans
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while keeping their data on the time-sharing server, it would need to utilize homomorphic

encryption to keep the data encrypted while calculating these trends. Homomorphic

Encryption is often utilized in conjunction with SMC. For that example, Alice has a

database that needs calculations done, and Bob has an input that will complete the

calculations, but Bob does not need the outcome of the calculations. Alice can encrypt

her data and send it to Bob. Once Bob has the encrypted data, he can complete the

required calculations with his input. After completing the calculations, Bob sends the

encrypted data back to Alice, and Alice and decrypt her calculated data with her original

key. Homomorphic encryption is often used for PPRL when a number of parties would

like to find the linkage in their data without utilizing an independent party to handle and

complete the linkage.

3.2.3 Multi-Party Computation Protocols

Secure multiparty computation (SMC) protocols which satisfy formal security guarantees

have been proposed for the computation of string similarity (Atallah et al., 2003) and for

secure collaborative data disclosure (Mohammed et al., 2014) (collaborative data disclosure

is further discussed in section 4.3). Another interesting application of SMC is in Laud

and Pankova (2018), who proposed a PPRL approach based on the use of a trusted third

party, and where the trusted third party is implemented by three independent servers

which compute collaboratively through SMC. The decomposition of the trusted third party

through three entities is thought to increase security, as all three servers need to be corrupted

in order for the third party to be compromised.

Generic SMC protocols, such as Yao’s garbled circuits and other protocols (Evans et al.,

2017), have not been widely considered for PPRL beyond the previously mentioned cases.

This is due to the computational and communication overhead of SMC in practice. In

particular, organizations holding sensitive data may not be willing to set up network access

to the servers holding sensitive data (Christen et al., 2020).

4 Application to Multiple Systems Estimation Studies

We consider the use of privacy-preserving record linkage in the context of RL+MSE studies.

First, we note that the standard framework of PPRL (Definition 3.1) is not well suited to the

privacy need of RL+MSE studies discussed in section 2.3. Indeed, in our application we do

not want organizations to be able to learn which records they have in common. Furthermore,
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in order to construct a table of overlap count as in table 1, we need information regarding

non-matching records. Finally, definition 3.1 merges the issue of performing record linkage

and of releasing data, thus complicating the analysis of disclosure risks.

Given these challenges, we propose to redefine PPRL in section 4.1, where secure entity

resolution (secure ER) now refers to a more specific conceptualization of PPRL. Our new

definition clearly separates secure computation from privacy considerations. In section 4.2,

we discuss how it may be implemented using the approaches reviewed in section 3.2. Finally,

in section 4.3, we discuss how organizations can disclose information while preserving

individual privacy.

4.1 Secure Entity Resolution

Given the previously discussed drawbacks of the standard conceptualization of PPRL

(Definition 3.1), we define secure entity resolution as follows.

Definition 4.1 (Secure ER). Secure entity resolution is the problem of securely computing

unique entity identifiers (uIDs) for records spread across organizations, where uIDs are

defined according to a given record linkage algorithm. The goal is for each organization to

obtain uIDs for their own set of records, without anything else being revealed.

Note that secure ER does not involve organizations learning about which of their records

match with other organizations’ records. There is also no utility in performing secure ER

on its own. Data disclosure must be considered as a second step to secure ER.

4.2 Implementing Secure Entity Resolution

The techniques and protocols discussed in section 3.2 and which rely on a linkage unit can

be adapted for secure ER. Indeed, the linkage unit can simply return to each organization

a set of uIDs, randomly generated under the matching constraint, instead of revealing a set

of matching records. However, the problem posed by a colluding linkage unit is exacerbated

in the context of secure ER since we do not want to reveal which records are matching.

Here we explore two techniques for secure ER which do not rely on a linkage unit and

which are applicable to the simplest forms of deterministic record linkage.

Method 1: Exact matching. The simplest way to perform entity resolution is to

directly construct unique entity identifiers from record attributes. For example, name and
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date of birth can be concatenated in a standard form in order to obtain an individually

identifying code. This corresponds to matching on the conjunction of given attributes and

can be a satisfactory solution for some problems.

For secure entity resolution, a keyed hash function can be applied to in order to obtain

anonymous unique entity identifiers, where the key is generated through some collaborative

protocol.

Method 2: More complex exact matching rules. Method 1 can be extended by

considering more complex exact matching rules. For instance, we may match records which

agree on name and date or birth, or which agree on name, zip code and birth year. For

each conjunction of attributes, an identifying code can be generated by concatenation and

anonymized through a keyed hash function, as in method 1. Two records will then match if

they agree on any of their corresponding identifying code. The remaining problem for entity

resolution is to resolve the many codes into single unique entity identifiers. A solution is

proposed below.

Formally, we propose an algorithm for secure ER in this context of matching with a

disjunction of two code-based rules, and with only two databases. That is, suppose we

have two databases D1 and D2 with owners O1 and O2, and suppose that the matching

rule has the following form: for given functions f and g, records x and y match if and

only if f(x) = f(y) or g(x) = g(y). For simplicity, we assume that there are no duplicates

within the databases. As stated in the previous paragraph, the entity resolution problem

is to determine, for each record x, which of the codes f(x) or g(x) should be used as the

basis of a unique entity identifier (uID). If there exists a record y such that f(x) = f(y)

but g(x) 6= g(y), then f(x) should be used instead of g(y) to ensure that the resulting uID

respects the matching rule. If x does not match any other records, then any one of the two

codes can be used. Each database owner must therefore know, for each of their records,

which code they should keep. For secure ER, they must do so without learning or revealing

the matching status of their records.

Our solution to this problem relies on additively homomorphic encryption and is outlined

in Algorithm 1 (see page 21). The idea is that elements of a set (say the identifying codes

for O2) can be represented as the zeros of a polynomial P (as in (Freedman et al., 2004)).

Owner O1 can then decide which of the codes f(x) or g(x) to keep as a unique entity

identifier for record x by computing P 2(f(x))− P 2(g(x)), where P 2 is the square of P . If

f(x) = f(y) of g(x) = g(y), then the sign of P 2(f(x))−P 2(g(x)) specifies which is the case.
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If both f(x) 6= f(y) and g(x) 6= g(y), then the sign of P 2(f(x))− P 2(g(x)) is arbitrary and

any one of f(x) and g(x) can be used as a unique entity identifier. The evaluation of the

polynomial is carried out under additively homomorphic encryption (such as Paillier (1999);

Freedman et al. (2004)) in order to protect each owner’s information.

Note that some information is leaked through this protocol. For instance, suppose a

record x in D1 is such that there exists y ∈ D2 with f(x) = f(y) and g(x) = g(y). Then

P 2(f(x))− P 2(g(x)) = 0 and O2 learns that one of O1’s record has matched through both

identifying codes. Furthermore, the set of evaluations {P 2(f(x)) − P 2(g(x)) | x ∈ D1}
may reveal information to D2 about the records in D1. Further work (such as based on

Freedman et al. (2004) which inspired our protocol) would be required to evaluate and

mitigate these risks.
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Input : Databases D1 and D2 with each N elements and owners O1 and O2; numeric

functions f, g : D1 ∪D2 → R.

Output : Each owner Oi obtains unique entity identifiers uIDi for its database which satisfy

the following matching rule: records x and y match if and only if f(x) = f(y) or

g(x) = g(y).

1 for i ∈ {1, 2}, owner Oi do

2 Construct polynomial Pi with zeros {f(x) | x ∈ Di} ∪ {g(x) | x ∈ Di}.
3 Encrypt P 2

i to P̃ 2
i using an additively homomorphic scheme.

4 Send P̃ 2
i to O3−i.

5 end

6 for i ∈ {1, 2}, owner Oi do

7 Initialize vector r̃i of length N .

8 for k = 1, 2, . . . , N do

9 Let x be the kth record of database Di.

10 r̃i[k]← P̃ 2
3−i(f(x))− P̃ 2

3−i(g(x))

11 end

12 Send randomly permuted vector r̃i to O3−i.

13 end

14 for i ∈ {1, 2}, owner Oi do

15 Initialize vector r3−i of length N .

16 for k = 1, 2, . . . , N do

17 Decrypt r̃3−i[k] to r3−i[k] = P 2
3−i(f(x))− P 2

3−i(g(x)).

18 end

19 Send sign(r3−i) to O3−i.

20 end

21 for i ∈ {1, 2}, owner Oi do

22 Initialize vector uIDi of length N .

23 Unpermute ri given step 12.

24 for k = 1, 2, . . . , N do

25 Let x be the kth record of database Di.

26 if ri[k] < 0 then uIDi[k] = f(x)

27 else uIDi[k] = g(x)

28 end

29 end

Algorithm 1: Computation of unique entity identifiers using an additively homo-

morphic encryption scheme.
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4.3 Collaborative Data Disclosure

Following secure ER, data can be disclosed through additional collaborative protocols which

are secure and which respect individual privacy. In the context of RL+MSE studies, one

goal is to obtain a table of overlap counts as in table 1. This can be achieved using protocols

for secure set intersection cardinality (Vaidya and Clifton, 2005).

Other studies can require different kinds of information. For instance, a risk analysis

study may rely on covariates which needs to be integrated across databases. However,

we do not want to reveal which cases come from which databases, and we might want to

output an integrated database which is differentially private. Data is then protected from

re-identification attacks (even attacks from any one of the participating organizations).

This is the subject of the growing field of secure multiparty data release under differential

privacy (Mohammed et al., 2014). Secure ER is the necessary first step to such secure

collaborative data diclosure protocols.

5 Discussion

There is no agreed-upon definition of PPRL, nor of the kind of security and privacy

guarantees which are required. This motivated us to formulate the notion of secure

ER, which clearly separates secure record linkage from privacy-preserving data disclosure.

However, unless we rely on a trusted third party, secure ER is a more difficult problem

than PPRL.

Furthermore, most of the PPRL literature proposes solutions which are either impractical

or insecure. Hash-based coding approaches are susceptible to different attacks, and the

risk of a colluding third party is real in many applications (e.g. when working with law

enforcement agencies which could coerce the third party).

Given the state of the field, there are opportunities to clarify the goals and meaning of

PPRL, and to possibly propose practical and secure solutions. Much more work is needed

in this area. In particular, it would be interesting to explore the practical applicability of

the secure ER approaches which we propose, and to extend them to more broadly useful

record linkage algorithms.
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